介绍 Apache HBase 的基本概念、环境部署、常用命令、实战技巧、架构设计和性能优化,并记录了一些踩过的坑,及其解决方案。

阅读全文 »

大数据生态圈中,保证一致性的方式举不胜举

他们各有什么区别,为什么会如此选型?

Paxos 选举算法

 Paxos 是最先解决拜占庭将军问题的算法,利用过半选举的机制,保证了集群数据副本的一致性(微服务中服务注册与发现的场景,其实已经不再适用了)

Raft 选举算法

 Redis 使用 Raft 实现了自己的分布式一致性。Raft 本身和 Paxos 并没有场景上的区别。更多的是,协议上的简化、Term 概念的强化、Log 只会从 Leader 到 Follower 单向同步,使得实现起来会很方便

Zab 原子广播协议

 Hadoop 偏向于离线的海量数据处理,利用 ZooKeeper 来保证数据副本的一致性,是最为合适的

Hash 路由算法

 ElasticSearch 集群接收到为文档创建索引的请求时,需要选择在哪一个 shard(完整且独立的 Lucene 索引实例)上对文档进行索引。ElasticSearch 采用的是 djb2 哈希算法(俗称 times33),对要索引文档默认或指定的 key 进行哈希 hash(key),然后再对 ElasticSearch 集群中 shard 的数量 n 进行取模,即 $hash(key) \, mod \, n$

一致性 Hash

 用于对数据存储进行负载均衡的算法。最新的进展,是在去年 Google 发表的一篇 有界负载的一致性 Hash 算法的论文。该算法保证了负载均衡一致性稳定性的同时,在均匀性方面做出了实质性地改进。同时,Consistent Hashing with Bounded Loads 算法 也在 HaProxy 开源项目中得以应用,有效减少了其 8 倍的缓存带宽

Gossip 闲话算法

 Gossip 主要被 Cassandra 用于实现其分布式一致性。因为 Cassandra 框架,更看重 去中心化容错 的特性,在不违背 CAP 定理的情况下,能够接受 最终一致性

阅读全文 »

什么是人工智能

 人工智能Artificial Intelligence, AI)亦称机器智能,是指由人工制造出来的系统所表现出来的智能。 — wikipedia.org

 从 深蓝到 AlphaZero,人工智能的智力水平、普适性、学习能力 正在以爆炸式地速度快速发展;
 从 棋类到 医学,人工智能开始在各类应用领域,都在大展身手;
 从 CPU / GPU 到 TPU,人工智能的计算能力正向着无法穷举的极限不断逼近 …

 但是,我们并不浮躁,踏踏实实地点亮 AI 知识树的每个枝叶,才是我们每位富有科学精神的人所应该做的

关于本文

 我们将分为三块对 AI 进行诠释

 首先,将介绍人工智能的主流思想实用技巧,通过一些耳熟能详的有趣定理,我们可以对人工智能有些直观、初步的认识;随后,言归正传,我们将开始接触 AI 领域的几大理论支柱,由浅入深地学习 统计学微积分线性代数概率论 等知识体系;最后,落地到实践,我们需要紧跟人工智能的技术发展前沿,对重大的突破性项目进行了解、学习,以及运用。如此,对人工智能领域进行横向分层,可以很方便地找到我们学习的突破点

 不过,出于文章编排的考虑,可能部分编码就要放在其他博文中了,如有不便,还望见谅(Python、Prolog、R、Java)。本文持续更新中,若有不妥之处,还请不吝赐教哈 (^o^)/

主流思想

演绎法 & 溯因法 & 归纳法

(利用 Axure™ 绘制而成)

实用技巧

Occam 剃刀原理

 奥卡姆剃刀(Occam´s Razor),意为简约之法,是由 14 世纪逻辑学家、圣方济各会修士奥卡姆的威廉提出的一个解决问题的法则,即"切勿浪费较多资源,去做'用较少的资源,同样可以做好'的事情",相同思想见于郑板桥的删繁就简三秋树

阅读全文 »

LeetCode 组队刷题活动

组队刷 LeetCode

介绍

代码仓库

 代码仓库的坐标:asdf2014 / algorithm

报名途径

 只需要在《Algorithm》文末的评论区,或者在 issues#40 中留言,即可随时参与

留言内容的话,可以是任意的。另外,也可以说明下自己能接受的刷题频率、希望的选题策略,亦或者,对算法知识沉淀的模式有好的建议,都可以提出,不胜感激

参与方式

 每位参与的小伙伴,都会获得代码仓库的 Collaborator 权限,可以自由地提交代码(不限制语种)。在 /Codes/${你的 Github 账号名} 目录下,每人都将拥有一个自己的代码库。留下 Github 名称后,将很快会收到邀请函,大家可以在 asdf2014 - algorithm - invitations 链接中认领(当然,也欢迎直接通过提交 Pull Request 参与进来)。随后,可以在任意目录下(不需要是空目录),使用如下命令,一键完成您的第一次代码提交:

1
bash -c "$(curl -L https://raw.githubusercontent.com/asdf2014/algorithm/master/first_commit.sh)"

刷题频率

 考虑到可能大家的闲暇时间并不多,我们暂定刷题频率为“一周一题”

选题策略

 选题机器人会在每周五晚八点,自动地随机选定一个题目,当前题目点击这里查看。

其他

 操作 Git 时遇到问题的话,可以参考我的一篇博客《Git 高级玩法

也可以直接在文章最后留言。目前,支持 Gitalk + Disqus 两种留言系统,以便更好地服务于国内和海外的小伙伴

 同时,为了大家更加方便地交流,也欢迎加入算法 QQ 群 或者 Gitter 聊天室

但是,请不要在评论区讨论入群问题的答案,避免打广告的进入

 另外,因为大部分算法都会有很多实现思路,我们会尽可能地展现所有可能的解题方法。但为了文章的排版更加地紧凑,我们会将同一算法的不同实现,通过选项卡的形式展现。且默认展示的选项卡将会是最优解。这样的话,如果您想要快速阅读本文,则可以不用翻看其他的选项卡。实际效果如下:

迭代解

1
2
3
4
5
6
7
8
9
10
11
def solution(n):
if n <= 1:
return n
a = 0
b = 1
while n > 1:
n = n - 1
sum_ = a + b
a = b
b = sum_
return b

递归解

1
2
3
4
5
def solution(n):
if n <= 1:
return n
else:
return solution(n - 1) + solution(n - 2)

动态规划解

1
2
3
4
5
6
7
8
def solution(n):
if n <= 1:
return n
cache = [x for x in range(0, n + 1)]
cache[1] = 1
for i in range(2, n + 1):
cache[i] = cache[i - 1] + cache[i - 2]
return cache[n]
阅读全文 »